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ABSTRACT

This research investigates thse of a electrochemical hydrogen compresgor
an energystorage stationThe electrochemical hydrogen compressor, as a-stdid
device, offers the ability to continuously operate for long periods without the need to
replace mechanical seals, lubricants, or filtiise two-part study consists ofstation
designand performance testing of a commerattthe-shdf electrochemicahydrogen
compressarStation design used rAericanSociety of MechanicalEngineers (ASME)
National Fire Protection Association (NFPA)and mpressedsas Association (CGA)
standards forisk mitigation and determination of feasibility fBrepartment of Defense
(DOD) and Navy applicatiomAnalysis of the compressor incluceesomparisorof actual
field performanceto ideal isothermaland adiabaticcompression of hydrogen
Performance chaicteristicsare investigatedver a range of variable inputs for use during
future optimization of the compression and storage station.

The hydrogen compression and storage station is one subsystem of systatti
demonstration obolar energy storage ing hydrogen as the primary storage medium
The larger system integrates commeroifitthe-shelf photovoltaic solar panels, selid
state hydrogen electrolyzers, sedithte electrochemical compressors, aoebton
exchange membrane fuel cell® demonstraterenewable energy storage The
compression and storage station design allows for reconfiguration and further research in
hydrogen technologieSimilar systems could be used on Navy shore installations, on
expeditionary bases, and at sea to increaseamsyliand reduce logistical demand for

fuels
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l. INTRODUCTION

The purpose of this research is to desigm)d, and test a renewlgbpowered
hydrogen gas compression and storage statmorporatingan electrochemical hydrogen
gas compressoiThe research, fundetirough the Office of Naval Research Engineering
Systems Technology Evaluation Program, is intended to further the ongoing efforts to
develop lowcost hydrogeninfrastructure in the NavyPotential gplications of this
research include energy storage atrshastallations with renewably generated power,
expeditionary microgrids, and seased hydrogen harvesting.

A. WHY IS A COMPRESSION AND STORAGE STATION NECESSARY?

Generating renewable and sustainable energy is the cornerstone of the ongoing
Department of Diense(DOD) drive for increasing resiliency at shore installatiofisere
are several methods of generating pofvem renewable energgources but most of
these are limited in their reliability due to existing energy storage optigsificant
investmeants havebeen madén developing advanced batteries and superconductors as a
solution Currently, supply chains are developing to provide -gadle electrical power
storage using batteries and supercapacitéfish a high gravimetric energy density,
hydrogen gas offers an enticing alternatitydrogen could serve as eithan alternative
to batteries andupercapacitorer a supplementary storage medium within a portfolio of

several storage technologies.

Previous researchy Aviles at the Naval Postgradute School demonstratedhe
feasibility of using solar photovoltaic electricity to extract water from ambient air and
then useghe water to make hydrogen dd$. This project also used the hydrogen gas in a
fuel cell to produce electricityAddinga hydrogencompression and storage statiorthis
systemwill enable electrical power generatidaring times when the photovoltaic array
cannotoperate Once compressed hydrogen gas is made readily avaibaisies other
systems can make use of the fuel suclyeserators, fuel cell powered vehicles, and

unmanned vehicles.



The DOD has traditionally focusedts alternative fuel investments in drap
alternative fuels for existing platform$he DOD and Navydefine alternativefuels as
those derived from matergbther than fossil fuel22]. Renewablygenerated hydrogen
gas, such as the hydrogen station demonstrated at NPS, falls into this category of
alternative fuels Current DOD policy is to fidiversify and expand energy supplies and
sources, including renewablenergy sources and alternative fadl3]. By analyzing
hydrogen storage technologies, this research is helping to achieReQtsdipolicy to
enhance military capability, improve energy security, and mitigate costs in its use and

management of energy3].

B. WHAT ARE ELECTROCHEM ICAL COMPRESSORS AND WHY USE
THEM?

Electrochemical hydrogenompressor{EHCS) are solidstate devices that use
direct current electricity to transport hydrogen through a proton exchange merabdane
build pressure into paressurevessel Their physical construction, operation, and theory
arevery similar to that of groton exchange membrane fuel c@lhere are humerous
potential advantages to usiitHCs as opposed to traditional mechanical compressors
most notably, the soliestate EHCs are not subject to the same mechanical fricaod
thermodynamic losses of their mechanical counterpdtie EHC is also designed to
follow an isothermal compression process which requires less energy than the adiabatic
process of mechanical camessorsA third coreadvantage is the inherent purification

process that happens as hydrogen gets transported through the membranes.

Figure 1 illustrates the process of hydrogen transfer through the membkane
low-pressurenydrogenis suppliedto the nlet (anode), itoxidizesdue to theelectrical
potential Each hydrogen atom loses an electron at the aramthis electron gets
transported via the electrical power supply to the cath8Suee the former hydrogen
atom is now missing an electron, #domes a proton which is attracted to the cathode
and pulled through the membrangt the cathodegachproton receives an electron,
becomes a hydrogen atom, bonds with another hydrogen atonexdasdhrough the

compressor outletAs hydrogen flows outfathe compressor outlet, it fills the storage



vessel and increases the vessel pressure until the power supply is turned off, a relief valve

is openegdor the compressor reaches its maximum compression.

H, > 2H + 2e 2H +2e > H,
Oxidation Reaction - | Reduction Reaction

Proton Exchange
Membrane

Solid Electrolyte

Low-
Pressure H,
SO

{ =\
(O]

ANODE (+)
CATHODE (-)
|+

e e e e

Figure 1. Electrochemical Hydrogen Compression Ha#ll Readbns

One half-cell consists of the oxidation of hydrogealong the anode
H,- 2H"+2e". The other consists of its reductialong the cathode2H™ +2e~ - H,.

Together, these reactioagse governedby the Nernst Equatiofil), which can provide the

theoretical cell potentialeeded from the power supptydrive the reactions

o

S
V qun &

= 1
theoretical ncF ?F_)l ( )

This theoy and governing equation will be discussed later along with the results from

testing theEHC.



Most hydrogen compressors used today rexhanicaldiaphragm or piston
compressors Mechanical ompression systems have relatively simple construction,
maintenane, and repairmprocedures Several major manufacturers offer mechanical
compressors with a wide range of inlet and outlet pressure configurations, with and
without integrated cooling, lubricated or unlubricated, sexeral other options that must
be congiered when selecting a compressdwhile the technology for mecheal

compression is mature, they have several inherent drawbacks.

Mechanical compressors are limited to how much compression they can achieve
Piston compressors are limited to a single stagpmpression ratio offi 6:1 while
diaphragm compressors can achi@ge20:1 ratios in a single stageHCs howeverare
scalable to achieva desiredflow rate and have demonstrated compression ratios of
300:1[4].

Mechanical compressors are also expenboth in upfront capital expenditure
requirements and operation and maintenamggure 2 demonstrates the high cost of
compression using traditional mechanical compres3ors cost breakdown comes from
a study conducted by the National Renewable ggneabordory in 2014 and includes
initial capital expenditure, as well as, operation and maintenance Thststudy noted
that the compressors had wide ranges of reliability and efficiency, making it more

difficult to breakdownthe relative costs of copression.



Cost Breakdown: Distributed: $2.70/kg H,

Other: $0.15
Cooling: $0.22

Dispenser:
$0.19

Compression:
$1.48

Storage: $0.66

Figure 2. Cost Breakdown for Hydrogen Generation Station. Sougte: [

Mechanical compressors are also large, heavy, loudusunally, require several
hazardous materials to operate efficienfBmalbmechanical compressors can weigh as
much a200' 400 kg The smallest mechanical compressor found on the maretl70
kg and 0.5 m3 while it could only compress to 51.Byerating this compressor would
require hearing protectiomd handling of hydraulic fluicand lubricantsEHCs on the
other hand,are silent, compact, and do not requandling hazardoumaterials.The
small compression and storage station designed and tested for this research would not be
feasible without theeHC. Neither the space available, budget, or gas generator could

supportusing a mechanical compressor.

C. WHY COMPRESS HYDROGEN GAS?

Hydrogen is considered an energy storage medium and not an energy. source
Hydrogen is thdahird most abundant element on Earth, but ih@éd foundnaturally in
largeand concentrateguantities Energy sources such as fossil fuels, solar, and wind can
be found naturally irboth useable form and quantitieslydrogen, on the other hand,
must be extractettom other moleculesHydrogencan be generated asbyproductin
chemical and biological processs from electrolysis, or extracted from hydrocarbon
molecules but itcannot be mined, drilled, or captured from the atmosphere in significant

guantities



Once extracted, hydrogen can provide heat and electricity through combustion or
reaction in a fuel el. The oxidation of hydrogenfollows the reaction:

2H,+0, - 2H,0. The enthalpy of combustion for hydrogen is approximately 141

megajoules per kilogranvhen the product is liquid water, otherwise known as the higher
heating value (HHV)) The enthalpy of combustion drops to 121 megajoules per kilogram
when the product is wateapor, otherwise known as the lower heating value (LHWje
enthalpy of combustion for hydrogeis nearly triple that of natural gas, propane,
gasoline, diesel fuel, andt fuel Tablel provides a briefravimetric energgomparison

of some competing engrgources and storage mediuriie tablds listedin descending
order of potential gravimetric energy densitstydrogen offers the best gravimetric
alternative to traitional hydrocarbon fuelsHowever, when the volumetric energy
density is considered hydrogen falls behind many other energy sources and storage
mediums Table 2 provides the volumetric energy comparison, again, sorted in
descending order of magnitudégure 3 gives a visualeferenceto the same data and
highlights the challenge of making compressed hydrogen gas competitive with liquid

hydrocarbon fuels.

Table 1.  Gravimetric Energy Densities of Common Energy Sources and
Storage Mediums

Energy Source / Storage Math Gravimetric Energy Density
[MJkg]
Gaseous bi(g) latm 120-142'°!
Liquid H, (1) 120142
Compressed Gaseous (d) 700Bar 120-142
Compressed Gaseous (d) 350Bar 120-142!
Methane (g) 50.055.5"!
LNG () 49.455 .28
LPG Propane (|) 46.050.0"!
CNG (g) 46.949.4
LPG Butane (1) 45.349.13"°)
Crude Oil (1) 43.1-48 31"
Gasoline (1) 44.548.2°
Jet Fuel () 42.845.7"°
Diesel (1) 42.945.7




Energy Source / Storage Math

Gravimetric Energy Density

[MJIkg]
Biogas Fuel Qil () 24.441 .94
Commercial byproducts (used tires) 38.2112
Coal (s) 16.333.514
Ethanol (1) 26.829.71
Commercial byproducts (coffee grounds) 23.81'%
Biomass (wood) 19.921.3*4
Biomass (peat) 8.61-18.6!*"
Commercial byproducts (cow manure) | 17.2%%
Fuel Cells (2015 Actual) 2.37%
Fuel Cells (2020 Target) 2.34113
Fuel Cells (Ultimate Target) 2.34143
Primary Batteries 0.20:2.121*4
Secondary Batteries 0.12-0.721*4

Supercapacitors

0.0070.036*°

Values in table are calculated based on physical property values obtareétémces listed for

each eargysour@/storagemedium

Table 2.

Volumetric Energy Densities of Common Energy Sources and

Storage Mediums

Energy Source / Storage Medium

Volumetric Energy Density

[MJIL]
Crude Qil () 34.447.6™
Jet Fuel (I) 36.0-38.4"°
Diesel (I) 36.0-38.4'°
Gasoline (1) 33.4-36.2°
Biogas Fuel Oil (1) 17.331.4%4
Coal (s) 11.031.1%4
LPG Propane (l) 23.525.5°
LPG Butane (1) 23.1-25.1
Ethanol () 23.5°
LNG (1) 22.2
Biomass (wood) 7.97.21.314
Commercial byproducts (used tires) 14.7-20.2%*%
Commercial byproducts (cow manure) | 17.1-:17.9*2
Biomass (peat) 2.07-17.9"1
Liquid H, (1) 8.59"]
CNG (g) 8.44-8.90"
Commercial byproducts (coffee grounds) | 7.45™2
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Energy Source / Storage Medium

Volumetric Energy Density

MJL]
Primary Batteries 0.54.86!*
Compressed Gaseous (g) 700Bar 4.7V
Fuel Cells (Ultimate Target) 3.06!%
Compressed Gaseous (¢) 350Bar 2.71
Fuel Cells (2020 Target) 2.34113
Fuel Cells (2015 Actual) 2.304*3]
Secondary Batteries 0.20-2.054
Supercapacitors 0.0050.05"°!
Methane (g) 0.03:0.04!

Gaseous bki(g) 1atm

0.00980.0115°

Values in table are calculated based on physical property values obtained in references listed for

each energgour@/storagemedium.
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Figure 3. Gravimetric and Volumetric Energy Density Comparisé€ommon
Energy Sources and Storage Mediums

The only way to compensate for the low volumetric energy density of hydrogen is
to either compress the gabquefy it, or bond hydrogennto another substance.
Compression is a straightforward method for increasiegvolumetric energy density for
short periods of timdor two key reasonsHrst, hydrogen is a gas underactical
temperatures and pressurdts critical temperature;23996 °C, and pressure, 12.98
atmospheres, necessitates the use of cryogenic refrigeration to bring hydrogen into liquid

form [16]. Second, hydrogeris most commonly use@s a fuel under atmospheric
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temperatures and pressuredorage in the same form in whicthe hydrogen will
ultimately be usedwill not require additional activeubsgtemsto maintain the storage

temperature and pressure.

D. CURRENT HYDROGEN STORAGE STRATEGIES

Hydrogen storage technology falls into two broad categofies first category
physcal storage of the hydrogen molecuis, the most commonPhysical storage
includes compressed hydrogen, liquefied hydrogen, and combined compressed and
cooled hydrogenThe second category imateriatbased storagef hydrogen atoms
Materiatbased stoige includes hydrides, sorbents, and chemical storégeong the
storage methodoutlined in Figure4, physical storage remains the most mature
technologyandthe most economical
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How is hydrogen stored?

Physical-based Material-based

Compressed Cold/Cryo
Gas Compressed

Adsorbent Liquid Interstitial Complex Chemical
organic hydride hydride hydrogen

Ex. MOF-5 Ex. BN-methyl  Ex. LaNicH, Ex. NaAlH, Ex. NH5BH,
cyclopentane

Bip
w4 7

surface

Figure 4. Hydrogen Storage Categori€®urce:[17].

Liquid hydrogen storage requiresoling systems that are capable of maintaining
temperaturebelow hydrogeds boiling point,-252.882°C. The National Aeronautics and
Space Administration pioneered the process of liquefying hydrogen to fuel space
exploration and has been successfullyngsliquid hydrogen since the 195048].
Combined compresdé&ooled hydrogen storage can be maintained at slightly higher
temperatures because compression is used to raideoilirey point On a volumetric
energy density basis, liquefied hydrogen is petitive with compressed natural gas
(CNG), but it has significant disadvantages in other arBath storage methods require a
tremendous amount of energy and large infrastructure investrmidngss primarily due
to the large amouraf energy needed tquefy hydrogen and store it in liquid fornAny
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heat transferred to the hydrogen results in-bffiland venting, reducing the amount of
usablefuel and time hydrogen can remain in liquid form without expending energy for

cooling.

Materiatbased storages one of the fastest growing research areas for increasing
hydrogenadoption The Department of Energ{DOE) budget for hydrogen storage
research and development was $15.6M2@16 and 42% of that went into materials
based storage research prograrhg].[ Bonding hydrogen with other substances for
storage purposas typically accomplishethrough the use of metal hydrides, sorbents, or
chemical storageMetathydride storage devices have been proven to Worlongterm
hydrogen storage but are heavyht@in rare and expensive materials, and typically

require thermal management systems to absorb and release hydrogen.

Table 3 compares current storage system gravimetric, volumetric, and cost
metrics against th®OEG goals for hydrogen storage technologiBise two cheapest
systens are compressed gas storage and sorbased storageThe 700 Bar storage
systems cost roughly the same as the most advanced sbasedt systems,

approximately $15 per kilowatt hour or $54 per megajoule.
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Table 3.

Adapted fronT19].

Hydrogen Storage Techlogies, CurrenStatusand DOE Targets

Current Status

Gravimetric
Density

Volumetric Density

Cost

kWh/kg system (kg
H2/kg system)

kWh/L system (kg
H2/L system)

$/kWh ($/kg H2)

DOE 2020 Target | 1.5 (0.045) 1.0 (0.030) $10 ($333)
DOE Ultimate

Target 2.2 (0.065) 1.7 (0.050) $8 ($266)
700 bar

compressed 1.4 (0.042) 0.8 (0.024) $15($500)
Metal Hydride

(MH): NaAlHa | 94 (0012) 0.4 (0.012) $43 ($1,430)
Sorbent: MOF5,

100 bar, 80 K 1.3(0.038) 0.7 (0.021) $15($490)
Chemical

yarogen (CH) 115 (0.046) 1.3 (0.040) Ty —

Storage Ammonia
Borane
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. DESIGN

A. REQUIREMENTS DEFINIT ION

Although no formal requirements documentsre draftecbeforedesign, the following
outlines a few of the performanagharacteristics and operating elements desired to

supportongoing anduture hydrogen researett NPS

1. PreviousResearch Performedat NPS

The compression and storage station was a necessary addition to the hydrogen
generation and fuel cell station demaattd byAviles [1] to enable continuous power
generation throughout a 2¥ur period While the photovoltaicarray could provide
useful energy during daylight hours, an energy storage station was needed to provide
electrical power during periods of darkese The 100W Horizon proton exchange
membrane(PEM) fuel cell used previously byAviles [1] would serve as the power
source after the photovoltaic array shut dowhe PEM requiresa steady supply of
hydrogen gas at approximately 1b&r and use approximaely 1.3 liters of gas per
minute at standard temperaturend 1.5 bar The two operating regimes, daytime

operations and nighttime operations, are illustrated in Figure 5.
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Daylight OPS

Air,

Dehumidifiers

PV Array

electricity

Load

Night OPS

PEMFC

Load

5O

Figure 5. Hydrogen Compression and Storage Stafidighlighted in Blue),
Day and Night Opettions

The shortest day of the yesr Monterey, CAhasroughly 8.5 hourof daylight
[20] not including twilight pemds This requires roughly 930 minutesf run time at

nightfrom the fuel cell The volume of hydrogen gas needed becomes:
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930 mir 1.3# =1208 @1Bar )
|

A total mass quantity is calculateding (3) the Ideal Gas Law (PV=mRT) and the gas
constant for Hydrogen (4124.5 Jki™):

_PV _  15Bar 1,209 J100,00Pa  .00f
RT 41245 - 3 20818  1Bar 1L @3)
kg
m=0.1474&g.

The mass quantitin (3) is the amount of hydrogen gas needed to operate a single
100W PEM fuel celfor the longesnight of the year in MontereyThis initial estimate

will aid in determining the final size of the storage station.

2. Concurrent Work at NPS

Previous work focused on demonstrating the photovoltaic array, dehumidifiers,
electrolyzer, and fuatell when connected as a systeboncurrent work to this research
by Yu [21] focuses on developing realistic performance profiles for the same elements
This work included refining the system design and reconfiguring for a wider range of
testing Therefoe, the compression and storage station design, fabrication, assembly, and
commissioning could not interfere withe parallelwork. Connections tesharedpower
supply, hydrogen pipelines, and test and measurement equipment were required to tie the
two statons together The electrolyzer used previously by LT Aviles produced a
maximum of 1.7 standard liters per mingspm) of hydrogen The concurrent research
designed replacement thfis unit with one rated fdiour slpmusing al2i 14 Vdc power
supply For design purposes, the station would ideally be capable of simultaneous
operdion with the electrolyzercompressinghe samefour slpm using al12i 14 Vdc

power supply.
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3. Future Work at NPS

Because lte hydrogen compression and storage station heillusedfor future
researchit was requiredo be flexible and scalable in desidgtesearch has already begun
to integratea microturbine to test the use of hydrogen gas in small turbine generators
The station neestl to deliver hydrogen gas at a flow rate and falumation useful to
collect data and analyze system performange initial estimate was made based on a
small commerciabff-the-shelf turbine.

In 2016, theDOE began testing hydrogen and synthetic fuel syngas on Capstone
microturbines 22]. Although theDOE research has not yet concluded and detailed data is
not readily availableCapstone microturbinspecificatons can provide a starting point
for designing a hydrogen storage statidhe smallest Capstone C30 microturbinwas
selectedhs asuitableexample and itsspecifications were used to make an initial estimate

for required hydrogen fuel flow characteristics

A Capstone C30 requires a nominal fuel flow of approximately 44446G0000
kJhr [23]. Using Hydroges Higher Heating Value of 141,781/kg, a mass flow rate of

hydrogen can be calculateding (4)

444.000 457,0087
- hsf — 0.000870 - 0.000908 (4)
141,781%3 3,600° S
kg hr

At startup, the flow requirement could be 1.5 times higher than the values in
Capstonés published specificationghe values in (4)becomeapproximately 0.00130

0.00134kg/s for startup purposes.

An alternative method ofdetermining fuel demand isused to verify thge
calculations The Capstone C30 is a 30kW gas turbine with advertised lower heating
value efficiency of 25% using approved fueds expected efficiency of 18% or lesan
be assumed whemsng hydrogenA second mass flow rate of hydrogemas calculated
using (5)andhydrogerds lower heating value of 119,953kag:
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30kWs 1, OOOﬂ
kW

18- 25%3119,955° 31,000
kg kJ
=0.001000- 0.00138\5/‘;&] -

- 0.001000- 0.0013888 .
S

Therefore, duel delivery requirement of 0.0014ks will be usedor further design.

A required supply pressure estimageneededn addition to the required flow
rate The 2015 EPA report on combined heat and power technologies examined six
different commerciabff-the-shelf microturbines and the required fuel gas pressor
these turbines ranged frot65 3.45 Bar 50i 140 psig) [24]. This same range wilbe
usedfor further designIn summary, the station would need to supply approximately
0.0014 lgy/s hydrogen flow rate aB.65 3.45 Bar B0i 140 psig to support using a

commercialoff-the-shelf microturbine during future research.

A project to design aontrol strategy and controls for ttegal system comprising
of thesolar array, charge contretl electrolyzer, dehumidifiers, compressor, and fuel cell
will also follow. The design will allowroom for installation ofadditional valves and
sensors for automated contralhe compression and storage stationst be easily
modified and reconfigurabl® accommodatadditional research projects and any others
that follow.

B. CODES, STANDARDS, AND EXISTING GUIDANCE

Codes and standards serve to guide the desigafefengineered systen@nce
the general requirements were determined, a preliminary lispmfcable codes and
standards was assembled to aid in further dedigur primary sources of codes,
standardsand existing guidance were used to compteecompressoin and storage

station designAlthough not all of the standards discussed below applieectly to the
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station being designedthey did provide useful information that helped determine the

statior@s capability for future expansion and use.

The American Society of Mechanical EngineefASME) serves as an
authoritative source for codes asthndards relating to pressure vessels, piping, and
piping systems The ASME B31(series) standargsovide detailed requirements for
piping and piping systems arate adoptedin most Federal, State, and Local laws
Specifically, ASME B31.12fiStandard on Hyrogen Piping and Pipelinegrovides
requirements for the piping used in gaseous hydrogen sewaditionally, ASME
B31.3 fiProcess Piping provided additional piping design requirements and material
specifications The AMSE Boiler and Pressure Vessetleds also widely adopted and
provides detailed requirements for the pressure vessels and auxiliary equipment needed in
the compression and storage station.

The National Fire Protection AssociatigNFPA) codes and standarasitigate
risks to people andrpperty by reducing the likelihood and severity foé. Two of
NFPAG cods were consultedluring the design of the compression and storage station
First, NFPA 2 Hydrogen Technologies Code provides safety requirements for hydrogen
systems Second, NFPA @, dso known as the National Electric Code, provides safety

requirements for electrical wiring and equipment.

The Compressed Gas Associatio@QGA) prepares standards relating to the
production, transportation, handling, and storage of hydrogen Fgasg d CGAs
standards were consulted during the design and offered valuable recommendations not
found elsewhereFrst, CGA G5 fiHydrogerd provides industrstandard physical and
chemical characteristics for hydrogen along with storage requirengectsnd, CGAG-

5.4 fiStandard for Hydrogen Piping Systems at User Locatignglesdesigning piping
systems,systemfabrication, starup, and maintenanc&hird, CGA G5.6 fiHydrogen
Pipeline Systentsguidesdesign, fabrication, stattp, maintenance, and skiddwn of
hydrogen pipelines Lastly, ANSI/CGA H-5 fiStandard for Bulk Hydrogen Supply
Systeme provides additional design guidance and outlines regulatory and safety

requirements for hydrogen systems.
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Daniel Crowl, the American Institute of Chemical Engineers, and the Center for
Chemical ProcessSafety served as the fourth primary source for guidafiteir
publications relating to chemical process safety, inerting, purging, and the behavior of

flammable materials was invaluable during the design process.

C. SAFETY ANALYSIS

The safety analysistared with determining the applicable regulations dedel
of effort requiredfor the risk managementederal, DOD, Department of the Navy, and
Naval Postgraduate School regulations and poligwese consulted The hydrogen
compression and storage statianimtended to be a relatively small and temporary
installation to aid imesearchTherefore many of the more stringent safety regulations do

not apply.

Title 29 of the U.S. Code of Federal Regulatic2® CFR Part 1910 contains the
Occupatimal Safety ad Health Standard29CFR lists hydrogen as a Hazardous
Material under Subpart H and Standard Number 1910 HO®ever, the standarioes
not apply to gaseous hydrogen systems having a total hydrogen content of less than 400
cubic feetd Furthermore, hyabgen is not listed in Standard Number 1910.119 Appendix
A List of Highly Hazardous Chemicals, Toxics and Reactiaedis not subject to the
Process Safety ManagemdmSM) requirements under 29CFR in quantities less than
4,536 kg 10,000 Iby. The statim design will not exceed eithéd.3 n? (400 cubic feat
or 4536 kg (10,000 Ib3. The safety precautions and guidance outlined in 29CFR
Standard Number 1910.103 for Hydrogemre followed nonetheless to ensure the

system and operatoresmainedsafe duringesearch.

Title 40 of the U.S. Code of Federal Regulatiod8GFR Part 68contains the
Chemical Accident Prevention Provisionglso known as the EPA Risk Management
Program RMP). An RMP includes a detailed risk management plan which is published
to the general public, submitted to the Environmental Protection Agency, and updated
every five years40CFRIists hydrogen in its Tables 3 addas a regulatedflammable
substance in quantities greatban 4,536 kg £0,000 |b%. The station design will not

exceed this thresholduantity and the RMP requirements do not apply.
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Since hydrogen is a flammable gas and hazardous material, Navy Occupational
Safety and Health Program and Operational Risk Management requirements still apply
Among these requirements ciande following OPNAVINST 5100.23G Chapter 7
Hazardous Material Controhnd ManagementHMC&M) policies and the29CFR
Section 1910.120@ccupational Safety and Health Administratio@SHA) Hazard
Communication StandardtHAZCOM). These applicable safety rdgtions are general

and contain too many requirements to list here.

The design process incorporated Process Risk Management in addition to
following the design requirements, codes, and regulatiBrixess Risk Management
encompasses the design, tactieshniques, and procedurdslfP9, and overallife cycle
approacho managing risk in a process statidime four broad categories of Process Risk
Management begin with Inherently Safer Desig®D) by eliminating hazards through
the complete removal diazardous conditiong'he second Process Risk Management
strategy is to design passive risk mitigation measures that do not relye @ctive
operation of a device or persofhe third strategy is to use active design elements that
continually operate siacas controls, detectors, alarms, and automated safety déhees
fourth category of design strategy is to incorporate administrative requirements to
mitigaterisks such as standard operating procedures, training, certifications, inspections,
and processeviews [25]. Three primary safety consideratiorere discusseth detalil
along with the measures taken to mitigate.risk

1. Combustion and Explosion Safety
a. Hazards Analysis

Several physical and chemical characteristics of gaseous hydrogen contribute to it
being a hazard to personnel, equipment, and facilites mentioned earlier29CFR
classifies hydrogen as a Hazardous Materi@lompressed ydrogengasis alsoclassified
as aClass 2Division 2.1 flammable gasnder4d9CFRPart 173 NFPA further classifie
hydrogen with its highest flammability rating of 4ANFFPA 704fStandard System for the
Identification of the Hazards of Materials for Emergency Resporidgdrogen is

difficult to detect agia colorless, odorless, tedess, flammable, nontoxic gag26]. It
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ignites easilywith a minimum ignition energy afi0.02 millijoule, which is an order of
magnitude less than the ignition energy for hydrocarbf2y. Hydrogenburns with an
almost invisible flamend produces only heat and water as combustion pi®duwill
burn inatmospheric aiat concentrations raging from 4% to 75%, a much wider range
than most hydrocarbon fuelén oxygen environments, the limits of flammability for
hydrogen gas extend from 4.6% to 93.926][ For these reasons,mbustionand
explosion of hydrogen gaare considereda high risk and the design for this research
mitigated this risk using various methods.

b. Mitigation

The first step inlnherently Safer Desigms to remove hazardous conditions
completely For hydrogen gas, thimvolves purging station components of oxygen and
removing all ignition sourcesThe first goal was designing the system for adequate
purging capabilitiesThe purposeof inertingand purging the system is to ensure there is
never a mixture of hydrogen gésel), oxygen ¢xidant), and ignition source capable of
starting or sustaining combustioifhoroughly purging the station ensures the fluid
remaining is incapable of maintaining a flame and no longer a flammability risk to users

or facilities.

When the stion was first assembledit containedatmospheric air, whh is
roughly 21%oxygen If one wereto simply start pumping compressed hydrogen gas into
the stationthere would be sufficient oxygen present to support combustion when and if a
spark were tagnite the gaslnertgaswasusedto mitigate this riskby removing enough
oxygen from the station tmakecombustionmpossible This processs demonstratedn
a triangular composition diagram of hydrodgeygen/nitrogen in Figure 6. The
assembled station starts at position F which is simple atmospheforging the station
to an inservice oxygen concentration of 5.7% i® represented by moving from point F
to point G on the figureThis ensuresthat when hydrogeis addedthe fluid composition
will never enter the combustible regiand will follow the line from point G to point A

Only fluid compositions inside the combustibégion will support combustion.
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A =Pure Hydrogen Gas, H,

B = Upper Flammability Limit in Pure O,
=93.9%

C = Stoichiometric Combustion Point
=33.3% 0, & 66.6% H,

D = Lower Flammability Limit in Pure O,
=4.6%

H,(g) [Fuel]

E = Pure Oxygen Gas, O,

F = Simple Atmospheric Air
=21% 0,

G= In-service oxygen concentration (ISOC)
~5.7%

H = Pure Nitrogen Gas, N,

J = Out-of-service fuel concentration (OSFC)
~5%
Combustible >

K = Upper Flammability Limit in Air

Region
= =75%
L = Stoichiometric composition in simple air
=Intersection of Lines AF and CH
AT M = Lower Flammability Limit in Air
5 —a9
5 —WE %
E‘,,“"’, - e N = Minimum Oxygen Concentration (MOC)

0,(9) [o",éidi{éf] : N(g) [Inert Gas] =a% o0,

Figure 6. Purging Process Depicted dniangular Composition Diagrarfor
Hydrogen/Oxygen/Nitrogen Adapted from27].

The Compressed Gas Association Standard for Hydrogen Piping Systems at User
Locations specifies using sweep purging, evacuation (vacuum) purging, Or pressure
purging to residual oxygen levels below 128]. Sphon puging involves using wateo
displace the combustible gas,is not included in the standard and therefamaes not
consideredduring the designSweepthrough purgingis accomplishedy passing the
purge gas through the system continuously until residygden levels are acceptable
This method requires large volumes of purge gas and is susceptible to failure due to
incomplete mixing of the residual and purgases Sweepthrough purging requires
precise placement of inlet and outlet ports and thorougtenstanding of the turbulent
mixing of gassesSnce the station will use standard commercial steel storage cylinders,
which only have one port for both inlet and outlet operations, and conservation of purge

gasis desired sweepthrough purgingvas elimnhatedas amoption during design.

Evacuation (vacuum) purgingsesvacuum pumpgo remove the air from the
tanks The mechanical vacuum pumpsquire energy and thereby lower the overall

station efficiency Vacuum pumpslsorequire lubricating fluid to perate, a hazardous
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material according to the Navy, and this would add an unwanted burden for researchers
Vacuum pumps also require routine maintenance which adds to the overalltmst
stationmust alsdbe capable of sustainirsgvacuum All componentstubes, sensors, and

the compressor would need to be designed and rated for vacuum seragubtion to
pressure serviceDespite the drawbacks associated with vacuum purging, it can save

significant quantities of purge gas over the other methods.

Pressire purgings accomplishedy pressurizing the station using pure inert gas,
allowing the ai/inert gas mixture to mix, and then venting théiert gas mixtureEach
cycle through the process resititt lowering the total amount of oxygen in the &tat A
combination of vacuum and pressure purging was used for this research to conserve the
amount of purge gas needed to reach a safe level of oxygen content in the station
cylinders and pipingThe ideal gas lawasused to determine thminimum numberof
vacuun/pressure purge cycles needed to reduce the oxygen concentration from
atmospheric aito 1% with pure nitrogen ga3he equations are derived and outlined in
detail inUnderstandingexplosionsby DanielCrowl, and theresultis shownin Appendix
A [27].

Purging was accomplished using tfioir-cylinder pressure purge #itan shown
in Figure7. After pressurizing, the gassegre givenenough time to thoroughly mix by
allowing the station to remain pressurized overnight with nitrogkrs also allowedor

a 24hr pressure tesb guarante no leaks were present.
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Figure 7. Fourcylinder Pressure Purge Station with Nitrogainders
Connected, 34 atrfb00psig) PressureRegulator, andCrosspurge
Assembly.

Lowering the residual oxygen concentration to below 1% wssential in
stoppingthe combustion procesklowever, removing potential ignition sources was also
required Combustion requiresfuel (hydrogen), oxidizer (oxygen), and ignition
Hydrogerds minimum ignition energy of 0.02 millijoules orders of magnitudeess than
that of asparkdetectible to touch (2fillijoules) [29]. Two broadstrategiesvereusedto
mitigate the risk of ignitionHrst, bonding and groundingereusedto reduce the risk of

static charge accumulation in station equipment and.flsedond, electrical wiring and
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componentswere selectedhat reduce the likelihood of mixing exposed electrical

connections with flammable gas.

Bonding and grounding best practi@e coveredinder NFPA 77 Recommended
Practice on Static Electricityror this research, basic grounding paths were established
for electrical equipmento reduce theisk of static dischargeDaniel Crowl warns in
Understanding Explosionthat static can build on both the equipment andpitoeess
fluid. Grounding of the hydrogenas the process material is required as well as the
equipment If the station were intended to be a permanent installation, a more thorough
electrical design based on NFPA 77aeenendations would be necessary to make sure

the process fluid is grounded.

NFPA 2 and NFPA 70 provide requirements and standards for electrical wiring of
hydrogen stationsAccording to these standarddectrical componentsiustconform to
the provisions of Article 500 of NFPA 70, Hazardous (Classified) LocatiGaseous
hydrogenis designateés Class I, Group B, Division 1 or 2 material by NFPA[3(].
The Division 1 or 2 determinatiomepend on the distance to vents or ignitable
concentrations of hydrogernThe easieststrategy to eliminate ignition sources is to
remove all sorces from within the zones specified by NFPA 2, whach reproduceth

Figure8.
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Figure 8. Electrical Area Classifications for Hydrogen Syste@murce: B1].

All electrical components were designed to be greater than 1 m from any Class |
Division 1 zoneThis eliminated some of the more stringent requireta@nd the risk of
ignition during normal conditiondHowever, some of the electrical componaetmained
within Classl Division 2 zones and were required to meet the requirements of NFPA 70
Article 501 Thes requirementsvere not followedfor two reasons First, the initial
assembly and testing of the station utilized an alternating current power supply from the
adjacent building These connections were temporary by design andbeilfemoved
once the statiois ready for connection to the photovoltaic power suggdgond,power
connections to the compressor are not enclosed and sealed from potential hydrogen
exposureThisis a design deficiency of the compresdarture compressor designs will
need to addss this deficiency before theye suitable for permanent installation in a
hydrogen stationThe deficiency was assessedadsw risk since the manufacturer had
not experienced problems after several thousands of hours of work with their product

Futurestation upgrades wilbe madevhenconnectionto the photovoltaic power supply
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